SG3525A

Pulse Width Modulator Control Circuit

The SG3525A pulse width modulator control circuit offers improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The on-chip +5.1 V reference is trimmed to $\pm 1 \%$ and the error amplifier has an input common-mode voltage range that includes the reference voltage, thus eliminating the need for external divider resistors. A sync input to the oscillator enables multiple units to be slaved or a single unit to be synchronized to an external system clock. A wide range of deadtime can be programmed by a single resistor connected between the C_{T} and Discharge pins. This device also features built-in soft-start circuitry, requiring only an external timing capacitor. A shutdown pin controls both the soft-start circuitry and the output stages, providing instantaneous turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands. The under voltage lockout inhibits the outputs and the changing of the soft-start capacitor when V_{CC} is below nominal. The output stages are totem-pole design capable of sinking and sourcing in excess of 200 mA . The output stage of the SG3525A features NOR logic resulting in a low output for an off-state.

Features

- 8.0 V to 35 V Operation
- $5.1 \mathrm{~V} \pm 1.0 \%$ Trimmed Reference
- 100 Hz to 400 kHz Oscillator Range
- Separate Oscillator Sync Pin
- Adjustable Deadtime Control
- Input Undervoltage Lockout
- Latching PWM to Prevent Multiple Pulses
- Pulse-by-Pulse Shutdown
- Dual Source/Sink Outputs: $\pm 400 \mathrm{~mA}$ Peak
- $\mathrm{Pb}-$ Free Packages are Available*

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ON Semiconductor ${ }^{\text {8 }}$

http://onsemi.com
A = Assembly Location
WL = Wafer Lot
$Y Y=$ Year
$W W=$ Work Week

DIAGRAMS

SG3525AN
0 AWLYYWW
1
1

PIN CONNECTIONS

htp:/lonsemi.com

[^0]

Figure 1. Representative Block Diagram

ORDERING INFORMATION

Device	Package	Shipping †
SG3525AN	PDIP-16	25 Units / Rail
SG3525ANG	PDIP-16 (Pb-Free)	25 Units / Rail
SG3525ADW	SOIC-16L	47 Units / Rail
SG3525ADWG	SOIC-16L (Pb-Free)	47 Units / Rail
SG3525ADWR2	SOIC-16L	1000 Tape \& Reel
SG3525ADWR2G	SOIC-16L (Pb-Free)	1000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	+40	Vdc
Collector Supply Voltage	V_{C}	+40	Vdc
Logic Inputs		-0.3 to +5.5	V
Analog Inputs		-0.3 to V_{CC}	V
Output Current, Source or Sink	10	± 500	mA
Reference Output Current	$\mathrm{I}_{\text {ref }}$	50	mA
Oscillator Charging Current		5.0	mA
	P_{D}	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	mW
Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {өJA }}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$\mathrm{T}_{\text {Solder }}$	+300	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Derate at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+50^{\circ} \mathrm{C}$.
2. Derate at $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for case temperatures above $+25^{\circ} \mathrm{C}$.

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
Supply Voltage	V_{CC}	8.0	35	Vdc
Collector Supply Voltage	V_{C}	4.5	35	Vdc
Output Sink/Source Current (Steady State) (Peak)	I_{O}			mA
Reference Load Current		0	± 100	
Oscillator Frequency Range	$\mathrm{I}_{\text {ref }}$	0	20	mA
Oscillator Timing Resistor	$\mathrm{f}_{\text {osc }}$	0.1	400	kHz
Oscillator Timing Capacitor	R_{T}	2.0	150	$\mathrm{k} \Omega$
Deadtime Resistor Range	C_{T}	0.001	0.2	$\mu \mathrm{~F}$
Operating Ambient Temperature Range	R_{D}	0	500	Ω

APPLICATION INFORMATION

Shutdown Options (See Block Diagram, page 2)

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of $100 \mu \mathrm{~A}$ to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.

An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions: the PWM
latch is immediately set providing the fastest turn-off signal to the outputs; and a $150 \mu \mathrm{~A}$ current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.
Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ [Note 3], unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
REFERENCE SECTION					
Reference Output Voltage ($\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$)	$\mathrm{V}_{\text {ref }}$	5.00	5.10	5.20	Vdc
Line Regulation ($+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}$)	Regline	-	10	20	mV
Load Regulation ($0 \mathrm{~mA} \leq \mathrm{L}_{\mathrm{L}} \leq 20 \mathrm{~mA}$)	Regload	-	20	50	mV
Temperature Stability	$\Delta \mathrm{V}_{\text {ref }} / \Delta \mathrm{T}$	-	20	-	mV
Total Output Variation Includes Line and Load Regulation over Temperature	$\Delta \mathrm{V}_{\text {ref }}$	4.95	-	5.25	Vdc
Short Circuit Current ($\mathrm{V}_{\text {ref }}=0 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}$)	$\mathrm{I}_{\text {Sc }}$	-	80	100	mA
Output Noise Voltage ($10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$)	V_{n}	-	40	200	$\mu \mathrm{V}_{\text {rms }}$
Long Term Stability ($\left.\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)($ Note 4)	S	-	20	50	$\mathrm{mV} / \mathrm{khr}$

OSCILLATOR SECTION (Note 5, unless otherwise noted.)

Initial Accuracy ($\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$)		-	± 2.0	± 6.0	\%
Frequency Stability with Voltage $\left(+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}\right)$	$\frac{\Delta \mathrm{f}_{\mathrm{osc}}}{\mathrm{DVCC}}$	-	± 1.0	± 2.0	\%
Frequency Stability with Temperature	$\frac{\Delta \mathrm{f}_{\mathrm{osc}}}{\mathrm{DT}}$	-	± 0.3	-	\%
Minimum Frequency ($\mathrm{R}_{\mathrm{T}}=150 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.2 \mu \mathrm{~F}$)	$\mathrm{f}_{\text {min }}$	-	50	-	Hz
Maximum Frequency ($\mathrm{R}_{\mathrm{T}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}$)	$\mathrm{f}_{\text {max }}$	400	-	-	kHz
Current Mirror ($\mathrm{I}_{\text {RT }}=2.0 \mathrm{~mA}$)		1.7	2.0	2.2	mA
Clock Amplitude		3.0	3.5	-	V
Clock Width ($\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$)		0.3	0.5	1.0	$\mu \mathrm{s}$
Sync Threshold		1.2	2.0	2.8	V
Sync Input Current (Sync Voltage = +3.5 V)		-	1.0	2.5	mA

ERROR AMPLIFIER SECTION $\left(\mathrm{V}_{\mathrm{CM}}=+5.1 \mathrm{~V}\right)$

Input Offset Voltage	V_{IO}	-	2.0	10	mV
Input Bias Current	I_{IB}	-	1.0	10	$\mu \mathrm{~A}$
Input Offset Current	I_{IO}	-	-	1.0	$\mu \mathrm{~A}$
DC Open Loop Gain $\left(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{M} \Omega\right)$	$\mathrm{A}_{\mathrm{VOL}}$	60	75	-	dB
Low Level Output Voltage	V_{OL}	-	0.2	0.5	V
High Level Output Voltage	V_{OH}	3.8	5.6	-	V
Common Mode Rejection Ratio $\left(+1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5.2 \mathrm{~V}\right)$	CMRR	60	75	-	dB
Power Supply Rejection Ratio $\left(+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}\right)$	PSRR	50	60	-	dB

PWM COMPARATOR SECTION

Minimum Duty Cycle	$\mathrm{DC}_{\min }$	-	-	0	$\%$
Maximum Duty Cycle	$\mathrm{DC}_{\max }$	45	49	-	$\%$
Input Threshold, Zero Duty Cycle (Note 5)	V_{th}	0.6	0.9	-	V
Input Threshold, Maximum Duty Cycle (Note 5)	V_{th}	-	3.3	3.6	V
Input Bias Current	I_{IB}	-	0.05	1.0	$\mu \mathrm{~A}$

3. $\mathrm{T}_{\text {low }}=0^{\circ} \quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$
4. Since long term stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
5. Tested at $\mathrm{f}_{\text {osc }}=40 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=3.6 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{D}}=0 \Omega\right)$.

ELECTRICAL CHARACTERISTICS (continued)

Characteristics	Symbol	Min	Typ	Max	Unit
SOFT-START SECTION					
Soft-Start Current ($\mathrm{V}_{\text {shutdown }}=0 \mathrm{~V}$)		25	50	80	$\mu \mathrm{A}$
Soft-Start Voltage ($\mathrm{V}_{\text {shutdown }}=2.0 \mathrm{~V}$)		-	0.4	0.6	V
Shutdown Input Current ($\mathrm{V}_{\text {shutdown }}=2.5 \mathrm{~V}$)		-	0.4	1.0	mA

OUTPUT DRIVERS (Each Output, $\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}$)

$\begin{gathered} \text { Output Low Level } \\ \left(I_{\text {sink }}=20 \mathrm{~mA}\right) \\ \left(l_{\text {sink }}=100 \mathrm{~mA}\right) \end{gathered}$	$\mathrm{V}_{\text {OL }}$	-	$\begin{aligned} & 0.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 2.0 \end{aligned}$	V
Output High Level $\begin{aligned} & \left(I_{\text {source }}=20 \mathrm{~mA}\right) \\ & \left(I_{\text {source }}=100 \mathrm{~mA}\right) \end{aligned}$	V_{OH}	$\begin{aligned} & 18 \\ & 17 \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	-	V
Under Voltage Lockout (V8 and V9 = High)	V_{UL}	6.0	7.0	8.0	V
Collector Leakage, $\mathrm{V}_{\mathrm{C}}=+35 \mathrm{~V}$ (Note 6)	$\mathrm{I}_{\text {(leak }}$	-	-	200	$\mu \mathrm{A}$
Rise Time ($\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	t_{r}	-	100	600	ns
Fall Time ($\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	t_{f}	-	50	300	ns
Shutdown Delay ($\left.\mathrm{V}_{\mathrm{DS}}=+3.0 \mathrm{~V}, \mathrm{C}_{S}=0, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)$	t_{ds}	-	0.2	0.5	$\mu \mathrm{s}$
Supply Current ($\mathrm{V}_{\mathrm{CC}}=+35 \mathrm{~V}$)	I_{CC}	-	14	20	mA

6. Applies to SG3525A only, due to polarity of output pulses.

Figure 2. Lab Test Fixture

Figure 3. Oscillator Charge Time versus $\mathbf{R}_{\mathbf{T}}$

Figure 5. Error Amplifier Open Loop Frequency Response

Figure 4. Oscillator Discharge Time versus \mathbf{R}_{D}

Figure 6. Output Saturation Characteristics

Figure 7. Oscillator Schematic

Figure 8. Error Amplifier Schematic

Figure 9. Output Circuit
(1/2 Circuit Shown)

For single-ended supplies, the driver outputs are grounded. The V_{C} terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

Figure 10. Single-Ended Supply

The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

Figure 12. Driving Power FETS

In conventional push-pull bipolar designs, forward base drive is controlled by R1-R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C1 and C2.

Figure 11. Push-Pull Configuration

Low power transformers can be driven directly by the SG3525A. Automatic reset occurs during deadtime, when both ends of the primary winding are switched to ground.

Figure 13. Driving Transformers in a Half-Bridge Configuration

PDIP-16
CASE 648-08
ISSUE V
DATE 22 APR 2015
NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
2. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE OR PROTRUSIONS. MOLD F
NOT TO EXCEED 0.10 INCH.
4. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
5. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
6. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
7. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	----	0.210	---	5.33
A1	0.015	----	0.38	----
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	
b2	0.060 TYP		1.52 TYP	
C	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005	----	0.13	---
E	0.300	0.325	7.62	
E1	0.240	0.280	8.26	
e	0.100	BSC	2.54	
eBSC	----	0.430	---	10.92
L	0.115	0.150	2.92	3.81
M	----	10°	---	

GENERIC

 MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G $\quad=$ Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42431B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-16 | PAGE 1 OF 1 |

ON Semiconductor and ©N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SCALE 1：1

NOTES：
1．DIMENSIONS ARE IN MILLIMETERS
2．INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14．5M， 1994.
3．DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION．
MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5．DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR PROTRUSION．ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 TOTAL IN PROTRUSION SHALL BE 0.13 TOTAL IN
EXCESS OF THE B DIMENSION AT MAXIMUM EXCESS OF THE B DIME
MATERIAL CONDITION．

	MILLIMETERS		
DIM	MIN	MAX	
A	2.35	2.65	
A1	0.10	0.25	
B	0.35	0.49	
C	0.23	0.32	
D	10.15	10.45	
E	7.40	7.60	
e	1.27	BSC	
H	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
\mathbf{q}	$0{ }^{\circ}$	$7{ }^{\circ}$	

GENERIC MARKING DIAGRAM＊

16月日日里日月且

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb－Free Package

＊This information is generic．Please refer to device data sheet for actual part marking． Pb－Free indicator，＂G＂or microdot＂\quad＂， may or may not be present．

| DOCUMENT NUMBER： | 98ASB42567B | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontroled except when stamped＂CONTROLLED COPY＇in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－16 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

